K⁺-Proton Elastic Scattering at 910 MeV/c; Polarization of the Recoil Protons^{*}

WARNER HIRSCHT AND GEORGE GIDAL

Lawrence Radiation Laboratory, University of California, Berkeley, California (Received 25 September 1963; revised manuscript received 26 February 1964)

The Berkeley 30-in. propane bubble chamber was used to study the elastic K^+ -proton interaction at 910 MeV/c. This is the region of transition from the isotropy in angular distribution found below 810 MeV/c to the rapidly increasing anisotropy above 1 BeV/c. Results based on 1154 events show that the series $(1+a\cos\theta_K^{e.m.})$ can fit the angular distribution with $a=0.18\pm0.05$. Polarization was measured on the secondary proton by using 53 proton-proton and 41 proton-carbon recoils in the liquid of the chamber. The results of a phase-shift analysis incorporating these polarization data are presented.

I. INTRODUCTION

HE work of Goldhaber et al.¹ indicates that the very low energy $K^+ - p$ interaction is characterized by an isotropic angular distribution, by constructive interference between nuclear and Coulomb interactions (therefore by a repulsive nuclear force), and by a negative S-wave phase shift the magnitude of which increases linearly with momentum at least as far as the 640-MeV/c region. A description of the scattering in terms of a $P_{1/2}$ interaction, or a mixture of $P_{1/2}$ and $P_{3/2}$ states, which can also reproduce isotropy, is ruled out by Goldhaber et al. on the basis of the low-energy behavior and the constant character of the angular distribution over this whole momentum region. These results are not in disagreement with the earlier work of Kycia, Kerth, and Baender.² At 810 MeV/c, isotropy is still a possible description of the observed angular distribution.³

The results of Cook *et al.*^{4,5} at 970, 1170, and 1970 MeV/*c* show that some anisotropy appears at around 1 BeV/*c* and increases rapidly in importance. Their 1970-MeV/*c* data are interpreted with an optical-model approach because the angular distribution here appears to be predominantly diffraction scattering.

Our present experiment is to measure the angular distribution in the region of transition, at 910 MeV/c, in order to try to determine, with the aid of polarization measurements on the recoil proton, the nature of the angular-momentum states involved in the interaction. If good polarization data are available, it is, in principle, possible to distinguish among the mixtures of angular-momentum states which can fit the angular distribution.

[†]Based on a thesis submitted by Warner Hirsch in partial fulfillment of the requirements for a Ph.D. in physics at the University of California. [Warner Hirsch, Ph.D. thesis, Lawrence Radiation Laboratory Report UCRL-10813, 1963 (unpublished)].

¹S. Goldhaber, W. Chinowsky, G. Goldhaber, W. Lee, T. O'Halloran et al., Phys. Rev. Letters 9, 135 (1962).

² T. F. Kycia, L. T. Kerth, and R. G. Baender, Phys. Rev. 118, 553 (1960).

³ T. F. Stubbs, H. Bradner, W. Chinowsky, G. Goldhaber, S. Goldhaber *et al.*, Phys. Rev. Letters 7, 188 (1961).

⁴ Victor Cook, Jr., Ph.D. thesis, Lawrence Radiation Laboratory Report UCRL-10130, 1962 (unpublished).

⁶ V. Cook, D. Keefe, L. T. Kerth, P. G. Murphy, W. A. Wenzel, and T. F. Zipf, Phys. Rev. **129**, 2743 (1963).

The Berkeley 30-in. propane bubble chamber⁶ was exposed to a 910-MeV/c separated K^+ beam⁷ at the Bevatron; 42 500 pictures were taken. A scan of 19 750 pictures for two-prong scatterings yielded 4982 candidate events. These were measured on digitized microscopes and constrained to be elastic $K^+ - p$ interactions with the FOG, CLOUDY, FAIR computer programs.⁸

Of the 4982 events, 1905 had readily identifiable scattered prongs, as indicated by (a) the proton's coming to rest in the liquid of the bubble chamber, or (b) the K^+ 's decaying after scattering, or (c) the K^+ 's moving in a backward direction with respect to the incoming beam particle. For other events, a scan-table comparison of predicted and observed ionization density and δ -ray formation gave the correct identity of the scattered prongs. These identifications were made after momentum and dip angles of the relevant tracks had been measured.

After constraint to elastic $K^+ - p$ scattering, 1154 events were included in the angular distribution.

For measurement of the polarization of the recoil proton, all 42 000 pictures were scanned for good $K^+ - p$ elastic scatters that were followed by interactions of the recoil protons either on hydrogen or on carbon. Good p-hydrogen events had to be coplanar and have the proper opening angle between the scattered protons. Good p-carbon events had to lie in the acceptable region of a modified Birge-Fowler plot⁹ and to show no evidence for an energy loss greater than 50 MeV. Out of 1757 candidate events, 94 met all these criteria (41 p-C and 53 p-H events).

The polarization information was used, with the measured angular distribution, to obtain the best sets of phase shifts to describe $K^+ - p$ elastic scattering.

^{*} This work done under the auspices of the U. S. Atomic Energy Commission.

⁶ W. M. Powell, W. B. Fowler, and L. O. Oswald, Rev. Sci. Instr. **29**, 874 (1958).

⁷G. Goldhaber, S. Goldhaber, J. Kadyk, T. F. Stubbs, D. Stork, and H. Ticho, Lawrence Radiation Laboratory Internal Report Bev-483, 1960 (unpublished).

⁸ H. S. White, S. S. Buckman, D. E. Hall, E. Hurwitz, L. B. Meissner, J. C. Smith, and F. R. Stannard, Lawrence Radiation Laboratory Internal Report, 1960 (unpublished).

⁹ R. W. Birge and W. B. Fowler, Phys. Rev. Letters **5**, 254 (1960); the data in this reference, as greatly expanded by Dr. V. Z. Peterson, in UCRL-10622 describes elastic p-C interactions and degrees of inelasticity of p-C interactions up to a proton energy loss of 50 MeV.

FIG. 1. χ^2 distribution for elastic scatterings. The curve is that expected for four degrees of freedom with errors underestimated by a factor 1.3.

II. SCANNING

The film was scanned in both views. Scanning instructions specify:

(a) that the incident K^+ enter the bubble chamber within 10 deg of the average beam direction, and that it have no other interaction prior to the two-prong scattering:

(b) that both scattered prongs not lie to one side of the incident track in both views, that both scattered prongs not go backward with respect to the incident track, and that the scattered prongs be not obviously noncoplanar with the incident track;

(c) that a track coming to rest in the liquid of the chamber, without decaying, be labeled "proton";

(d) that a track whose ionization abruptly becomes less dense, and shows a scattering at this point, be labeled " K^+ decay" unless the kinematics violate this hypothesis:

(e) that a track scattered backward with respect to the incident track be labeled " K^+ ," and, finally,

(f) that all δ rays be noted (this is useful for subsequent identification of prongs).

Scattered tracks less than 3 mm long in any view were rejected.

For the second portion of this experiment, which involved the measurement of the recoil-proton polarization, an instruction was given to note all interactions on scattered prongs. Another 22 750 pictures were scanned only for such second scatterings. The whole film yielded 1757 of these events.

The final angular distribution contains events only from the fully scanned 19 750-picture sample, whereas the polarization measurements use all the available film. The fully scanned rolls of film are interspersed within the total footage to ensure proper sampling.

Of the 4982 candidate events for the angular distribution, 1905 events had their scattered prongs indentified by scanning criteria (c), (d), and (e). The remaining 3077 events had to be constrained to two elasticity hypotheses corresponding to the possible identity permutation of the scattered tracks $(\lceil K^+, p \rceil$ and $\lceil p, K^+ \rceil$).

III. SELECTION CRITERIA

A. Elasticity Criteria

Elastic scattering experiments on hydrogen in a propane chamber are characterized by high background, since only one-third of the possible interactions take place on free protons. We have three momenta conditions and one for energy conservation on nine measured variables (one momentum and two angles define each track). By using the method of Lagrange undetermined multipliers, a best fit to the elasticity hypothesis and a χ^2 goodness-of-fit estimate are obtained. The χ^2 distribution is shown in Fig. 1.

We chose a χ^2 cutoff^{10} of ten.

We plotted the angular distribution of "quasielastic" events, defined as those which had $10 < \chi^2 < 40$ and which also fulfilled the conservation equations after constraint. These are contaminated by interactions with peripheral protons in carbon. Comparison with the elastic distribution ($\chi^2 \leq 10$ events) shows that, within statistics, both have the same angular distribution. Thus, choosing our cutoff at $\chi^2 = 10$ does not introduce a bias in the angular distribution.

We then went back to the scan table and looked at those events with $\chi^2 < 10$ where scattered prongs had not previously been identified. Using the measured momentum from curvature, and compensating for the dip angles of the tracks, we compared the predicted and observed ionization densities to differentiate between the scattered K^+ and proton.

Whenever possible we used the δ rays to aid us. The maximum energy of a δ ray is velocity-dependent. At momenta below 600 MeV/c, for example, a proton will not create δ rays of sufficient energy to be visible in propane.11

In some cases it was possible to use range curvature to pick out the K^+ . The $\pi^+ - p$ background interactions can also frequently be detected in this way.

By using these three techniques (ionization, δ rays, and range curvature) we were able to identify 95% of the scattered tracks. Events with unidentified tracks were omitted. These consisted mainly of very steep tracks where the ionization density was unreadable. some kinked tracks where the momentum or range were unmeasurable,¹² and lastly, events falling in

 $^{^{10}}$ The measured χ^2 distribution in bubble-chamber data is often found to be of correct shape but displaced too far toward higher values of χ^2 . This is due to a general underestimation of measurement errors, and must be corrected before a cutoff limit can be meaningful. Our errors were underestimated by a factor of 1.3.

 $^{^{11}}$ This minimum $\delta\text{-ray}$ energy is approximately 0.4 MeV, though ¹² This minimum oray energy is approximately 0.4 MeV, though straggling may cause variation in this. In propane, an electron of energy greater than 1.0 MeV will lose 1 MeV per centimeter. ¹² Since there are four constraint equations, we can deliberately omit measuring the momentum of a bad track, use a constraint to

supply it, and still have three conditions left to impose on the event.

regions where temperature gradients caused distortions in the oil between the cameras and the chamber.

Out of the 4982 candidate events sent to the computer, 1448 or 29% passed the constraint tests.

B. π^+ Contamination

The primary beam contamination of π^+ and μ^+ was measured by use of δ rays. First a special scan was made¹³ of film from another experiment with known π flux in the same energy region. A count was made of beam-track δ rays with more than 5 MeV, and, separately, of beam-track interactions. These δ rays must come from π or μ , while the interactions must come from π alone. By comparing the results of this count with results from our experiment, we concluded that the combined π and μ background was $8.9 \pm 0.5\%$, on the basis of 307 δ rays greater than 5 MeV on 6735 m of beam track. The π contamination alone is $5.9 \pm 1.2\%$ on the basis of 23 δ rays greater than 5 MeV found on tracks that subsequently interacted. This π^+ contamination is greatly reduced by our scan table re-examination and by the constraint process. The maximum π contamination of our finally selected data is 0.5%.14 This is well within the errors due to statistics.

C. Beam Momentum

A plot of measured beam momentum for all accepted events, fitted with a Gaussian curve, gave the value 910 ± 70 MeV/c. A study of τ decays¹⁵ gave a result (also averaged over the length of the chamber) of 910 ± 60 MeV/c. The momentum loss of the K⁺ over the length of the bubble chamber gives a minimum momentum spread of ± 50 MeV/c. We chose cutoff limits of $910 \pm 100 \text{ MeV}/c$.

D. Geometric Criteria

The $K^+ - p$ interaction, assuming a spherically symmetric potential, must be invariant under the rotation of coordinate axes about the incoming beam direction. To test this, the azimuthal angle ϕ was plotted. It shows a generally isotropic distribution except for regions at 0, 180, and 360 deg. These are the angles of particles heading almost straight up or down in the chamber. These tracks are hard to see and hard to measure, and we are biased against them. To correct for this, the acceptable regions (as determined from the

FIG. 2. Experimental angular distribution at 910 MeV/c. Fit "A" is $1+0.18 \cos\theta$; fit "B" is $1+0.20 \cos\theta+0.18 \cos^2\theta$.

experimental ϕ distribution) for the azimuthal angle ϕ are from 10 to 165 deg and 190 to 340 deg.

There was, in addition, a fiducial-region criterion so that all events would lie in easily visible regions of the bubble chamber. This ensured that scanning efficiency would not vary too rapidly with the position of the interaction vertex.

A last criterion specified that the error (after constraint) in $\theta_{K}^{c.m.}$, the center-of-mass scattering angle of the K^+ , be small enough to minimize the chance of events overlapping into adjoining angular distribution boxes. This required an error of less than 6 deg in $\theta_{K}^{e.m.}$. Only four events were affected.

IV. ANGULAR DISTRIBUTION

In Fig. 2 we show the angular distribution of the 1154 events that met the selection criteria. A cosine power series was fitted to this distribution by a least-squares analysis. We find the angular distribution satisfied by either

$$(d\sigma/d\Omega) \propto 1 + (0.18 \pm 0.05) \cos\theta_{K}^{c.m.}$$
, with $\chi^2 = 7.2$,

or

$$(d\sigma/d\Omega) \propto 1 + (0.20 \pm 0.06) \cos\theta_K^{\text{c.m.}} + (0.18 \pm 0.12) \cos^2\theta_K^{\text{c.m.}}, \text{ with } \chi^2 = 4.8.$$

The former is more satisfactory because the addition of the $\cos^2\theta_{K}^{c.m.}$ term does not change the coefficient of the $\cos\theta_{K}^{c.m.}$ term appreciably. And, the coefficient of $\cos^2\theta_{\kappa}^{c.m.}$ has an error almost as large as itself.

V. POLARIZATION

From the unknown polarization P_0 produced in a direction

$$\hat{n}_1 = \mathbf{P}_{K_{\text{in}}} \times \mathbf{P}_{p_{01}} / |\mathbf{P}_{K_{\text{in}}} \times \mathbf{P}_{p_{01}}|$$
 at the first vertex,

the known analyzing power P_1 in direction

$$\hat{n}_2 = \mathbf{P}_{p_{02}} \times \mathbf{P}_{p_{so}} / |\mathbf{P}_{p_{02}} \times \mathbf{P}_{p_{so}}|$$
 at the second vertex,

¹³ We wish to thank Thomas G. Schumann for carrying out this

scan. ¹⁴ This assumes that the angular distribution of π^+, p is similar to the the distribution is peaked forward to that of K^+, p . Actually the π^+, p distribution is peaked forward more than the K^+, p at this energy [see J. A. Helland, T. J. Devlin, D. E. Hagge, M. J. Longo, B. J. Moyer, and C. D. Wood, Phys. Rev. Letters 10, 27 (1963)]. Compensation for this brings the maximum π^+ contamination up from 0.5% to 1.0%. However, our rescan with a δ -ray search reduces this again. ¹⁵ B. Kehoe, Phys. Rev. Letters **11**, 94 (1963); (private communication).

and $\cos\Phi = \hat{n}_1 \cdot \hat{n}_2$, we constructed the likelihood function

$$\mathfrak{L}(P_0) \propto \prod_{i}^{k} (1 + P_0 P_{1_i} \cos \Phi_i). \tag{1}$$

The product is over the k second scattering events used, and the *i*th term is proportional to the probability that the *i*th event scattered through θ_{1_i} , ϕ_{1_i} at vertex 1, survived undeflected to vertex 2, and scattered there through θ_{2_i} , ϕ_{2_i} .

A set of input values, P_0 , then gives a curve with a maximum that defines a most probable value $\langle P_0 \rangle$, and a width that defines the uncertainty in this value.

For later combination with a phase-shift analysis, we have used \mathcal{L} to find a value of $\langle P_0 \rangle$ in four intervals of $\theta_{K}^{\text{c.m.}}$, the center-of-mass scattering angle of the K^+ .

To be useful for polarization measurements, second scatterings must fulfill two conditions: (a) they must occur on proton recoils from an elastic first scattering, and (b) they must be interactions for which polarization measurements have been carried out in some previous experiment. Proton-carbon scatterings have been investigated in the region from perfect elasticity to an energy loss of 50 MeV for most of the accessible energies.⁹

The momentum of the incident proton at the second vertex was well known because this proton had previously been constrained at the first vertex. The momenta of the scattered tracks at the second vertex are often hard to measure because the tracks are short. The angles of such tracks, however, can still be accurately measured.

By convention, the angle of scattering referred to in p-p interactions is the smaller of the two scattering angles, corresponding to the forward hemisphere in the center of mass.

A. Proton-Hydrogen Interactions

Second scatterings with two visible outgoing prongs were tested in two ways as being possible elastic p-pscatterings.

First, all three tracks were required to be coplanar within limits chosen after inspection of the distribution in the value of the triple scalar product of the momentum vectors. This distribution centers at zero with a width of ± 0.05 . The limits chosen were ± 0.15 .

The second requirement was that the laboratorysystem opening angle of the two outgoing protons be 85 ± 13 deg, as determined from the experimental distribution.

Events which met these two tests and which also were good $K^+ - p$ elastic scatterings at the first vertex were assigned appropriate analyzing power from the graph in the Birge-Fowler paper.⁹

Six requirements have been mentioned for inclusion of an event in the angular distribution. Of these, only

the elasticity and beam-momentum restrictions (at the

B. Proton-Carbon Interactions

first vertex) were kept for polarization candidates.

The first requirement on prospective p-C scatters was that they should be elastic to within 50 MeV. Only events in which the proton momentum and scattering angle fell below the 50-MeV inelasticity line on the Birge-Fowler plot were considered. We also studied the photographs, using all available information such as momentum, dip angle, measurement errors, and ionization density to estimate the amount of energy loss.

There were a few recoil protons that came to rest in the chamber. Their momentum was known to 3% and their energy loss could be accurately determined. At higher momenta, curvature measurements could be made on the recoil proton. In most cases, however, the amount of inelasticity could not be extablished. Such events were arbitrarily labeled "elastic." This is reasonable because of the very high relative cross section (300 mb) for elastic scattering in the acceptable Birge-Fowler region.

If an event fell in a region where the analyzing power had not been measured, or could not be found by a short extrapolation, we did not use it. We finally used 41 events.

A bias is introduced by the fact that some of the one-prong scatterings at small angles are really p-H scatterings with proton recoils too short to be seen in propane. The maximum p-p analyzing power of 45% is only half the maximum p-C analyzing power.

To resolve this bias, we plotted the laboratorysystem angular distribution of p-C and p-p scatterings as shown in Fig. 3. The p-p angular distribution is isotropic at our energies.¹⁶ We found that portion of our distribution which is indeed a straight line and extended it to 0 deg, to estimate the number of missing p-p scatterings.

¹⁶ A. E. Taylor, Rept. Progr. Phys. 20, (1957).

B194

Not all the p-C scatterings in the angular region of the extrapolated line could be p-p, since some configurations would have produced visible recoils.

We estimated that there were 9.8 hidden p-p events in 54 elastic and inelastic p-C scatterings. Therefore, each p-C event, if used for the polarization, was assigned a mixed analyzing power [82% (p-C)+18% (p-p)].

C. Polarization Analysis

The polarization events finally chosen are shown plotted in Fig. 4. The ordinate is to be interpreted as the "equivalent number of unit analyzing power"; it is the sum $\sum_i (P_{1_i} \cos \Phi_i)$ for all events falling into the same interval of $\theta_{K^{c.m.}}$. This corresponds to counting up the total effective analyzing power in that interval. It might also be thought of as the number of events that an equivalent counter experiment (of such geometry that $\cos \Phi_i \equiv 1$ and $P_{1_i} \approx 1.00$) might have recorded. It will be noted that the *p*-C events tend to cluster in the region $\theta_K^{c.m.} < 90$ deg, while the *p*-H events tend to lie in the other center-of-mass hemisphere. This means that, in the laboratory system, *p*-H scatterings tend to occur with the faster protons, whereas *p*-C scatterings tend to be found with the slower protons.

Though the p-p cross section is nearly constant throughout this energy region (70 to 500 MeV), the p-pscatterings tend to occur on the faster protons because these lie forward in the chamber and have much longer path lengths with greater likelihood of interaction. The p-C elastic scattering cross section is greatest at the lower energies. The maximum angle of scattering of elastic events of higher energy shrinks to 10 deg. Unless the plane of such a small scattering is nearly horizontal, it may not be visible. Also, there is 8/3 as much hydrogen as carbon in propane. These circumstances combine to give us fewer p-C events than p-p events although the p-C cross section is larger.

Equation (1) cannot be used for bubble chamber

FIG. 4. Center-ofmass angular distribution of K^+ for elastic scatterings used in polarization determination. The ordinate is as described in the text.

events without including a geometric correction factor.¹⁷ Since the measurement of polarization is based on an azimuthal asymmetry at the second scattering vertex, we must be able to detect, for a given scattering angle, all azimuthal directions. In other words, protons, scattering in a cone of half-angle α about the direction of the incident proton, must all be visible. If the second scattering occurs near the top or bottom of the bubble chamber, for some azimuthal directions the protons may leave projected track lengths too short to be seen in the photographs. This forms a bias in polarization measurement. Each event must be corrected individually. Twelve percent of our events were affected. Equation (1) then becomes

$$\mathcal{L}(P_0) \propto \prod_{i}^{k} \left[\left(1 + P_0 P_{1_i} \cos \phi_i \right) \right]$$
$$\int_{\phi_{1_i}}^{\phi_{2_i}} \left(1 + P_0 P_{1_i} \cos \phi \right) d\phi \right], \quad (2)$$

where ϕ_{1_i} and ϕ_{2_i} are the limits of visibility on the *i*th event.

Corrections are made for spin precession and momentum loss between scatterings.¹⁸

Depolarization of protons does occur to some extent,¹⁶ but since no complete information covering a wide range of energies and angles is available we have not included this correction.

The results of the application of Eq. (2) to the four intervals of $\theta_{K}^{o.m.}$ chosen on the basis of the distribution shown in Fig. 4 are

$$\begin{split} \bar{P}_0(40 \leqslant \theta_K^{\text{e.m.}} < 70 \text{ deg}) &= -0.80 \pm 0.80, \\ \bar{P}_0(70 \leqslant \theta_K^{\text{e.m.}} < 100 \text{ deg}) &= -0.74 \pm 0.45, \\ \bar{P}_0(100 \leqslant \theta_K^{\text{e.m.}} < 140 \text{ deg}) &= +0.55 \pm 0.93, \end{split}$$

and

$$P_0(140 \leq \theta_K^{\text{c.m.}} < 160 \text{ deg}) = +0.70 \pm 0.93$$

The sign conventions can be summarized as follows: Positive analyzing power means that protons with spin "up" will scatter to the left in the second scattering. The sign of the polarization is defined to be positive when the majority of the protons recoiling to the left of the incident K^+ meson had their spin vectors "up." Thus, positive polarization corresponds to a majority of the events having $\cos\phi_i = +1$ in Eq. (1).

VI. PHASE-SHIFT ANALYSIS

The analysis of our angular distribution into phaseshift solutions incorporating the polarization data was

¹⁷ The existence of this factor was first called to our attention by Dr. Malcolm Whatley. A detailed explanation can be found in Ref. 18, Appendix D. See also, M. Whatley, Ph.D. thesis, University of Wisconsin, 1962 (unpublished); also, Bull. Am. Phys. Soc. 8, 21 (1963).

¹⁸ For a complete discussion of the geometric corrections and the spin precession correction, see W. Hirsch, Ph.D. thesis, Lawrence Radiation Laboratory Report UCRL-10813, 1963 (unpublished).

performed by a computer program called KAPANAL, written by Foote and thoroughly described in his thesis.¹⁹

This program was a least-squares grid-search system to find a set of phase shifts that would give a minimum value of χ^2 for the experimental data, starting from a set of random numbers. One can start the minimization procedure over and over again with new sets of random numbers, thus eventually covering most of the χ^2 surface. The program has been adapted by Cook, as is described in his thesis,⁴ and in the work of Cook *et al.*⁵

In the input data, other than the random numbers that form the starting point of the calculation, the following must be included: the ten differential cross-section points from the angular distribution (Fig. 4), the four measured values of the differential polarization, $\bar{P}_0(\theta_K^{\text{c.m.}})$, a total cross-section estimate, and a total elastic cross-section normalization estimate.

The last two items were obtained from other experiments in neighboring energy regions^{3,4} by interpolation. No exhaustive attempt was made to measure cross sections, though a means was adopted to see that our data corroborated the conclusions of the other experiments. This involved a τ -decay scan¹⁵ which gave the K^+ beam flux and showed that our total elastic cross section was within 1 standard deviation of the extrapolated value used in the program.

The cross sections used were

a

$$\sigma_{\text{(total)}} = 14.7 \pm 1.3 \text{ mb}$$

and

$$T_{\text{(total elastic)}} = 11.8 \pm 1.9 \text{ mb}.$$

From the cosine-series fit to the angular distribution, we see that the term of highest degree is $\cos\theta_K^{\circ.m.}$ or, possibly, $\cos^2\theta_K^{\circ.m.}$. Thus, one would expect the p wave to be the highest angular-momentum state needed to describe the interaction.

Yet, following the reasoning of Cook *et al.*,⁵ we also allowed for a $D_{3/2}$ interaction, since this corresponds to a possible N^* formation channel,

$$K^+ + p \rightarrow K + N^* \rightarrow K + N + \pi$$
.

(Threshold momentum is 880 MeV/c.) If one assumes the N^* production to take place in an orbital (K^+,N^*) S state, the $\frac{3}{2}$ + spin-parity assignment of the N^* requires the K^+, p system to have been in a $D_{3/2}$ state.

Recently Kehoe¹⁵ has shown that the inelastic process

$$K^+ + p \rightarrow K^0 + p + \pi^+$$

at 910 MeV/*c* can be completely described if he assumes the π^+ and proton are the decay products of the $J=\frac{3}{2}, I=\frac{3}{2}N^*$ that was produced by the exchange of a ρ meson.²⁰ The 2.1±0.2-mb cross section reported for this process represents a major part of the total inelastic cross section at this energy.

We made several attempts to include the absorption in all momentum channels, but found in each case, however, that the clustering of solutions (on which we depend to discern the shape of the χ^2 surface) is smeared into a broad general background. The same phenomenon, though less severe, occurred upon inclusion of the absorption in only two channels.

It was decided, therefore, to limit absorption to one channel, though giving each channel the same number of random trials. Stubbs *et al.* had made the same decision and had found the results insensitive as to which channel was chosen.³

Four hundred sets of solutions were obtained. There were 300 trials in the "S and P" category (100 for each of the three ways of including the absorption) and 100 trials of the "S-P- $D_{3/2}$ " category. The first 50 trials in each category gave us nearly all the solutions; the last 50 brought these out again plus only two new ones, which were the sign-changed solutions of some that appeared previously. We concluded, therefore, that nearly all solutions had been found.

We obtained a χ^2 distribution whose shape fitted a theoretical curve very well. We chose a cutoff at $P(\chi^2) = 0.01$.

To test the validity of this cutoff, we went back to the likelihood function given by Eq. (2). In determining the polarization we maximized $\mathcal{L}(P_0)$ as a function of P_0 . We now changed this procedure in the following way. We first identified all the clusters of similar solutions from the phase-shift fitting program, regardless of their χ^2 probability. Every solution predicts a differential polarization function $P_0(\theta_K^{o.m.})$. We then inserted for each of the 94 events $(i=1,2,\cdots,94)$ its value of $[P_{0j}(\theta_{K_i}^{o.m.})]$, as predicted by the *j*th solution $(j=1,2,\cdots,52)$. Then \mathcal{L} became the relative probability for the *j*th solution:

$$\mathfrak{L}(\delta_{s_j}, \delta_{p_{1/2_j}}, \cdots) \propto \prod_{i}^{k} \left\{ \left[1 + P_{0_j}(\theta_K^{\mathbf{c} \cdot \mathbf{m}}) P_{1_i} \cos \Phi_i \right] \right/$$
$$\int_{\Phi_{1_i}}^{\Phi_{2_i}} \left[1 + P_{0_j}(\theta_K^{\mathbf{c} \cdot \mathbf{m}}) P_{1_i} \cos \Phi \right] d\phi \right\}.$$

Likelihood rejection ratios can be set up. We considered that a ratio of 250:1 was sufficient to dismiss a particular solution.

This procedure is not independent of the KAPANAL program since the same polarization information is used in both; yet, there is a difference. KAPANAL uses a "lumped" polarization $\langle P_0 \rangle$ over an angular region. The likelihood method, on the other hand, uses each event individually. The sensitivity of these methods is different. We therefore used the one as a check on the other.

J. H. Foote, Ph.D. thesis, Lawrence Radiation Laboratory Report UCRL-9191, 1960 (unpublished).
 ²⁰ L. Stodolsky and J. J. Sakurai, Phys. Rev. Letters 11, 90

 $^{^{20}}$ L. Stodolsky and J. J. Sakurai, Phys. Rev. Letters 11, 90 (1963).

Designation	δ_s	$\delta_{p^{1/2}}$	$\delta_{p^{3/2}}$	η	$\sigma_{\rm inel} \ ({\rm mb})$	$P(\chi^2)$
A+ A- B+ B- B' C+ C- C' D+ D-	$\begin{array}{c} 0.6\pm 2.0 \\ -5.5\pm 1.5 \\ 44.6\pm 3.8 \\ -41.2\pm 24.5 \\ -27.0\pm 13.3 \\ -2.7\pm 2.5 \\ -5.4\pm 1.8 \\ 9.4\pm 2.0 \\ 8.3\pm 1.7 \\ -5.6\pm 1.9 \end{array}$	$\begin{array}{c} -17.1 \pm 1.8 \\ 20.3 \pm 2.2 \\ -12.9 \pm 7.4 \\ -6.8 \pm 28.4 \\ -19.1 \pm 11.8 \\ 48.0 \pm 0.9 \\ -46.2 \pm 1.2 \\ -57.9 \pm 7.0 \\ 74.8 \pm 2.9 \\ -62.7 \pm 1.8 \end{array}$	$\begin{array}{c} 29.8 \pm \ 0.8 \\ -29.0 \pm \ 1.0 \\ 2.5 \pm \ 3.1 \\ 13.1 \pm 26.2 \\ 22.1 \pm \ 3.6 \\ 3.0 \pm \ 1.0 \\ 5.5 \pm \ 1.9 \\ 15.2 \pm \ 3.2 \\ 5.5 \pm \ 1.6 \\ -1.1 \pm \ 1.8 \end{array}$	$\begin{aligned} \eta_{s} &= 0.80 \\ \eta_{p3/2} &= 0.90 \\ \eta_{p3/2} &= 0.77 \\ \eta_{p3/2} &= 0.77 \\ \eta_{p3/2} &= 0.75 \\ \eta_{s} &= 0.67 \\ \eta_{p3/2} &= 0.86 \\ \eta_{p1/2} &= 0.50 \\ \eta_{p1/2} &= 0.53 \\ \eta_{p1/2} &= 0.65 \end{aligned}$	1.8 1.9 4.1 4.1 4.4 2.8 2.6 3.9 3.8 2.9	$\begin{array}{c} 0.58 \\ 0.01 \\ 0.22 \\ 0.22 \\ 0.25 \\ 0.07 \\ 0.14 \\ 0.63 \\ 0.45 \\ 0.05 \end{array}$

TABLE I. Solutions involving S and P waves.

All the solutions rejected by χ^2 considerations were also rejected under our 250:1 likelihood rejection ratio. This is an indication that our χ^2 cutoff did not allow spurious solutions to enter. On the other hand, two or three solutions well within our likelihood tolerance were rejected by χ^2 . In such cases we let χ^2 decisions prevail.

There were 37 solutions left after the χ^2 test. Next, error estimates were sought to detect overlap of solutions.

As explained in Foote's thesis,¹⁹ an error matrix involving the real parts of the phase shifts can be calculated by the KAPANAL program. This is based on an expansion of the χ^2 equation in a Taylor series at a minimum point where the first derivatives with respect to the parameters are zero.

We sought the clusters of solutions we had found previously and determined the variation among the same phase shifts in a given cluster. This relies on the real meaning of deviation as linked to the repetition of the same experiment a large number of times.

Both methods corroborated each other. We adopted the values of deviations given by the error matrix.

Having found the rms errors in the phase shifts, we then eliminated the large amount of overlap in our 37 solutions. Two solutions were considered to be overlapping if they fell within 2 standard deviations of each other.

Another phenomenon had to be eliminated. Several strings of linked solutions, each about 1 standard deviation away from its neighbors, were found. They generally tended to some "best" solution at a low value of χ^2 . In such cases, only the "best" solution, toward which all the others tended, was chosen. The linked chain was taken to describe a deep, but rough

well, on the walls of which many spurious relative minima might appear.

Our final results consist of ten S- and P-wave solutions and six S, P, $D_{3/2}$ wave solutions. These are presented in Tables I and II.

The curve of predicted polarization $P(\theta_{\kappa}^{c.m.})$ versus $\theta_{\kappa}^{c.m.}$ for solutions with $P(\chi^2) > 0.15$, along with the location of the four $\langle P_0 \rangle$ measurements, is shown in Figs. 5(a) and 5(b).

VII. DISCUSSION

The angular distribution shows, as might be expected, a behavior midway between the near isotropy given by Stubbs *et al.*,³ at 810 MeV/*c*, and the more pronounced forward peaking given by Cook *et al.*,^{4,5} at 970 MeV/*c*.

Turning now to the phase-shift sets of Table I, we consider first the S-P solutions. Set A^+ , A^- , which is a $P_{1/2}$ - $P_{3/2}$ mixture, was also found by Stubbs *et al.*³ and by Cook *et al.*^{4,5} Set B^+ , B^- , B' represented our dominant S-wave solutions. Goldhaber *et al.* found that negative S-wave phase shifts described their data from 140 MeV/c at least as far as the 640-MeV/c region.¹ The δ_s decreased linearly with momentum from -10 deg at 140 MeV/c to -36 deg at 642 MeV/c. A δ_s of -47 deg was also one of the results of Stubbs *et al.*³

We found numerous solutions with large negative δ_s , but they all overlapped with a separation of 1 or, at most, 2 standard deviations. The solution labeled A^+ , and included as a $P_{1/2}$ - $P_{3/2}$ mixture, was actually the solution of low χ^2 toward which all the linked solutions with negative δ_s tended. The opposite end of the chain is typified by solution B^- with its large errors. On the other hand, B' represents a solution that lies in the midpoint of the chain.

TABLE II. Solutions involving S, P, and $D_{3/2}$ waves.

Designation	δ_s	$\delta_{p^{1/2}}$	$\delta_{D3/2}$	$\delta_{D3/2}$	$\eta_{D3/2}$	$\sigma_{\rm inel}~({ m mb})$	$P(\chi^2)$
E	23.7 ± 7.7	22.4 ± 7.5	1.2±0.9	-23.1 ± 1.4	0.67	5.5	0.29
F	-23.9 ± 5.9	-24.0 ± 2.4	18.9 ± 2.8	-4.0 ± 1.3	0.86	2.6	0.58
G^+	26.1 ± 3.9	-5.1 ± 3.1	2.2 ± 1.3	-27.4 ± 2.3	0.77	4.1	0.50
G	-18.3 ± 2.2	4.6 ± 2.1	0.5 ± 1.2	29.3 ± 0.9	0.99	0.2	0.01
H^+	2.6 ± 2.9	-17.9 ± 2.6	28.8 ± 1.2	$-3.6{\pm}1.4$	0.84	3.0	0.29
H^-	5.0 ± 3.5	19.5 ± 2.2	-26.5 ± 1.3	6.0 ± 1.2	0.80	3.6	0.12

What this could mean is that the solutions with dominant $-\delta_s$ lie in a broad deep rough depression in the χ^2 surface with a minimum at $\delta_s = 0$. The conclusion might be drawn from this that the K^+ -p interaction is no longer dominated by a repulsive S-wave phase shift, though we are prevented, probably by our large polarization errors, from seeing more positive indication of this.

Sets C^+ , C^- , C' and D^+ , D^- are various dominant $\delta_{P_{1/2}}$ solutions. Some of these may be Minami ambiguities of the *B* set, though ambiguities do not remain clearly identifiable in the presence of absorption. It is hard to link up these solutions with the low-energy behavior, though similar sets were found by Stubbs *et al.*³ and Cook *et al.*^{4,5}

The *D*-wave solutions are presented in the second portion of Table I. No linking of chains of similar solutions was observed.

In summary, then, the added polarization informa-

tion raises a possibility that the dominant S-wave behavior of $K^+ - p$ elastic scattering might have been superseded by a $P_{1/2}$ - $P_{3/2}$ mixture. On the other hand, a D-wave solution such as F offers a way of linking more easily to results at lower energy and to the inelastic channels at this energy.

ACKNOWLEDGMENTS

The scanning effort of Mrs. Rho Gamow is gratefully acknowledged. We thank Dr. Victor Cook for his explanation of the contents and use of the KAPANAL program. We also thank Dr. Robert Birge, Dr. Robert Ely, Dr. Denis Keefe, Dr. Anne Kernan, Dr. P. Newcomb, and Professor Wilson M. Powell for helpful conversations.

The Data Handling Group did the kinematic reconstruction and constraints and thanks are due Howard White and Loren Shalz.